18.02.2014 09:54 Uhr in Energie & Umwelt von TU München

Chemische Reaktionen in zellähnlichen Systemen liefern überraschende Vielfalt

Kurzfassung: Chemische Reaktionen in zellähnlichen Systemen liefern überraschende VielfaltIn einer biologischen Zelle laufen schier unendlich viele komplexe und miteinander verknüpfte Reaktionen ab. Um solche N ...
[TU München - 18.02.2014] Chemische Reaktionen in zellähnlichen Systemen liefern überraschende Vielfalt
In einer biologischen Zelle laufen schier unendlich viele komplexe und miteinander verknüpfte Reaktionen ab. Um solche Netzwerke besser untersuchen zu können, versuchen Wissenschaftler um Professor Friedrich Simmel, Inhaber des Lehrstuhls für Bioelektronik der Technischen Universität München (TUM), sie mit den nötigen Komponenten in einer Art künstlichen Zelle nachzubauen. Dahinter steht zudem die Überlegung, solche Ein-Zell-Systeme in Zukunft beispielsweise als "Nanofabriken" für die Herstellung komplizierter organischer Substanzen oder Biomaterialien zu nutzen.
Bisher funktionierten solche Versuche allerdings überwiegend nur mit sehr einfachen Reaktionen. Das Team um Professor Friedrich Simmel hat jetzt erstmals eine komplexere biochemische Reaktion in nur wenige Mikrometer kleinen Tröpfchen untersucht. Gemeinsam mit Kooperationspartnern von der University of California Riverside und vom California Institute of Technology in Pasadena, USA, präsentieren die Wissenschaftler ihre Ergebnisse in der aktuellen Ausgabe von Nature Chemistry.
Mit einmal Schütteln tausend Experimente
Für das Experiment gaben sie eine wässrige Reaktionslösung in Öl und schüttelten den Ansatz kräftig, so dass eine Emulsion mit Tausenden kleiner Tröpfchen entstand. Mit winzigen Mengen Material können sie so günstig und schnell eine extrem große Zahl paralleler Versuche gleichzeitig ansetzen.
Als Testsystem wählten die Forscher einen sogenannten biochemischen Oszillator. Dabei handelt es sich um mehrere Reaktionen mit DNA und RNA, die periodisch immer wieder hintereinander ablaufen. Ihr Rhythmus wird dadurch erkennbar, dass sich in einem Schritt zwei DNA-Stränge so aneinander lagern, dass ein Fluoreszenzfarbstoff leuchtet. Dieses gleichmäßige Blinken zeichnen die Wissenschaftler mit einer speziellen Kamera auf.
Kleine Tropfen - große Unterschiede
Mit ihrer Arbeit wollten Friedrich Simmel und seine Kollegen zunächst grundsätzlich untersuchen, wie sich ein komplexes Reaktionssystem verhält, wenn es auf Zellgröße herunterskaliert wird. Konkret stellten sie zudem die Frage, ob sich alle Tropfen-Systeme gleich verhalten und wodurch mögliche Unterschiede verursacht werden.
Ihre Versuche zeigten, dass die Oszillationen in den einzelnen Tröpfchen stark voneinander abwichen, und zwar stärker, als dies nach einem einfachen statistischen Modell zu erwarten gewesen wäre. Deutlich wurde vor allem, dass kleine Tropfen sich stärker unterschieden als große. "Es ist zunächst überraschend, in einem noch vergleichsweise einfachen chemischen System ähnliche Variabilität und Individualität zu beobachten, wie man dies sonst eher von biologischen Zellen her kennt", erläutert Friedrich Simmel die Ergebnisse.
Exakt gleiche Systeme lassen sich so derzeit also nicht realisieren. Für die Praxis bedeutet das, entweder nach Möglichkeiten zu suchen, um diese Schwankungen zu korrigieren oder sie von vornherein mit einzukalkulieren. Darüber hinaus lassen sich die vielen leicht unterschiedlichen Systeme auch gezielt dazu nutzen, aus Tausenden von Ansätzen einen optimal laufenden herauszusuchen.
Die Forschung an komplexen biosynthetischen Systemen in künstlichen Zellen hält eine Menge weiterer Fragen bereit. Friedrich Simmel möchte sich in einem der nächsten Schritte den theoretischen Modellen dahinter widmen: "Es ist uns mit dieser Arbeit gelungen, über die hochparallele Aufnahme der Emulsionströpfchen zahlreiche interessante Daten zu gewinnen. Unser Ziel ist es nun, mit deren Hilfe die theoretischen Modelle von biochemischen Reaktionsnetzwerken bei kleinen Molekülzahlen zu überprüfen und zu verbessern."
Die Arbeiten wurden unterstützt aus Mitteln der National Science Foundation (USA), der Europäischen Kommission, der Deutschen Forschungsgemeinschaft (Exzellenzcluster Nanosystems Initiative Munich) sowie des Bayerischen Elitenetzwerks.
Publikation:
"Diversity in the dynamical behavior of a compartmentalized programmable biochemical oscillator. Maximilian Weitz, Jongmin Kim, Korbinian Kapsner, Erik Winfree, Elisa Franco, Friedrich C. Simmel. Nature Chemistry, Advance Online Publication: 16 February 2014. DOI: 10.1038/nchem.1869

Kontakt:
Prof. Dr. Friedrich C. Simmel
Technische Universität München
Lehrstuhl für Bioelektronik - Systems Biophysics and Bionanotechnology
Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 89 289 11612 - E-Mail: simmel@ph.tum.de
Internet: http://www.e14.ph.tum.de/
Weitere Informationen
TU München
Die Technische Universität München (TUM) ist mit rund 420 Professorinnen und Professoren, 6.500 Mitarbeiterinnen und Mitarbeitern (einschließlich Klinikum rechts der Isar) und 22.000 Studierenden eine der führenden Universitäten Deutschlands. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.
TU München,
, 80333 München , Deutschland
Tel.: ;
Weitere Meldungen dieses Unternehmens
Erfolgreiche Pressearbeit eBook
Pressearbeit
Eine Pflichtlektüre für mehr Sichtbarkeit durch Pressemitteilungen.
Pressekontakt

TU München

80333 München
Deutschland

E-Mail:
Web:
Tel:
Fax:
Drucken Weiterempfehlen PDF
Schlagworte
Permanentlinks https://www.prmaximus.de/98256

https://www.prmaximus.de/pressefach/tu-münchen-pressefach.html
Die Pressemeldung "Chemische Reaktionen in zellähnlichen Systemen liefern überraschende Vielfalt" unterliegt dem Urheberrecht. Jegliche Verwendung dieses Textes, auch auszugsweise, erfordert die vorherige schriftliche Erlaubnis des Autors. Autor der Pressemeldung "Chemische Reaktionen in zellähnlichen Systemen liefern überraschende Vielfalt" ist TU München, vertreten durch .