Warum Fische beim Schwimmen nicht abdriften

Kurzfassung: Warum Fische beim Schwimmen nicht abdriftenWenn wir durch den Wald joggen, bewegt sich das Bild der Bäume scheinbar rückwärts über unsere Netzhaut. Dies geschieht für beide Augen in die gleiche R ...
[Max-Planck-Institut für Neurobiologie - 07.04.2014] Warum Fische beim Schwimmen nicht abdriften

Wenn wir durch den Wald joggen, bewegt sich das Bild der Bäume scheinbar rückwärts über unsere Netzhaut. Dies geschieht für beide Augen in die gleiche Richtung. Drehen wir uns dagegen um die eigene Achse, dann rotieren die Bäume scheinbar um uns herum. Für das eine Auge erfolgt diese Rotation von außen nach innen, für das andere Auge von innen nach außen. Unser Gehirn verarbeitet solche großflächigen Bewegungen der visuellen Umwelt, den "optischen Fluss", sodass wir zum Beispiel beim Joggen unsere Geschwindigkeit richtig einschätzen und nicht andauernd stolpern.Natürlich kann nicht nur das menschliche Gehirn den optischen Fluss wahrnehmen. Fische, die in fließendem Gewässer zuhause sind, nutzen die Fähigkeit zum Beispiel, um ihr Abdriften in der Strömung zu verhindern. Basierend auf dem optischen Fluss korrigiert der Fisch seine passive Verschiebung durch eigenes Schwimmen. Wie und wo das Fischgehirn diese Berechnungen durchführt, das war bislang unbekannt.
Ein transparentes Gehirn im Einsatz
"Wir wollten wissen, wo und von welchen Nervenzellen die Ausgleichsbewegungen ausgelöst werden, erklärt Herwig Baier. Zusammen mit seiner Abteilung am Max-Planck-Institut für Neurobiologie sucht und beschreibt er im Gehirn von Zebrafisch-Larven die Nervennetzwerke, die bestimmte Verhaltensweisen steuern. Keine leichte Aufgabe, denn das Gehirn der rund 5 Millimeter großen Fischlarven ist zwar winzig, besteht aber aus mehreren hunderttausend Nervenzellen. Ein Vorteil ist jedoch, dass das Gehirn der Fischlarven beinahe durchsichtig ist. So können Nervenzellen ohne Eingriff direkt unter dem Mikroskop beobachtet werden.
Für ihre Untersuchungen setzten die Wissenschaftler die Fischlaven in runde, weiße Container, auf deren Wänden sich schwarze Streifenmuster bewegten. Je nach Bewegungsmuster reagieren die Tiere unterschiedlich: Bewegen sich die Streifen für beiden Augen nach vorne oder hinten, dann schwimmt der Fisch nach vorne oder versucht umzudrehen. Werden die Streifen jedoch entweder im oder gegen den Uhrzeigersinn um den Fisch herumbewegt, dann drehen sich die beiden Augen mit der wahrgenommenen Rotationsrichtung. Die Ausgleichsbewegungen des ganzen Körpers (optomotorisches Verhalten) oder nur der Augen (optokinetisches Verhalten) sollen das Bewegungssignal auf der Netzhaut so klein wie möglich machen - der Fisch hält seine Position.
Leuchtende Nervenzellen im "IMAX-Kino"
Die Neurobiologen wollten nun die Nervenzellen im Gehirn eines aktiven Fisches finden, die Eigenbewegung verarbeiten und diese optomotorischen und optokinetischen Ausgleichsbewegungen auslösen. "Das war wie die sprichwörtliche Stecknadel im Heuhaufen zu finden, erzählt Fumi Kubo, die Erstautorin der Studie. "So etwas war noch vor wenigen Jahren völlig undenkbar. Für ihre Studie zog Fumi Kubo in Kollaboration mit Aristides Arrenberg vom Institut für Biologie I der Universität Freiburg und Wissenschaftlern vom Freiburger Exzellenzcluster BIOSS Centre for Biological Signalling Studies daher eine ganz neue wissenschaftliche Methode heran: die Abbildung des gesamten Gehirns. Dank neuester Fluoreszenzfarbstoffe und genetischer Finessen ist es seit Kurzem möglich, die Umrisse aller Nervenzellen in einem Fischgehirn sichtbar zu machen. Das Besondere ist jedoch, dass die Farbstoffe ihre Farbe ändern, wenn eine Nervenzelle aktiv wird.
Während des Versuchs wurde der Kopf der Fische mit dem gefärbten Nervensystem in ein Gel eingebettet. Die bewegten Streifenmuster auf den Wänden des Containers gaukelten den Tieren, ähnlich wie in einem IMAX-Kino, eine Eigenbewegung vor. Je nachdem, ob sich die Tiere scheinbar geradeaus oder um eine bestimmte Achse drehten, verfolgten sie die Muster mit den Augen oder schlugen mit dem Schwanz. Durch ein Zwei-Photonen-Mikroskop konnten die Wissenschaftler währenddessen beobachteten, welche Nervenzellen auf die Bewegungsrichtung des jeweils gesehenen Musters reagierten.
Nervenzellschaltplan im Fischgehirn
Bisher waren vier richtungsselektive Zelltypen in der Netzhaut bekannt. Wissenschaftler gingen bisher davon aus, dass diese Zelltypen und die nachgeschalteten Nervenzellen im visuellen Gehirn die Augenbewegungen verarbeiten und die Befehle zum Halten der Position des Fisches weitergeben. Jetzt konnten die Neurobiologen in der Tat solche, vergleichsweise einfachen Nervenverbindungen nachweisen. Zusätzlich fanden sie jedoch sieben weitere, bislang unbekannte Zelltypen mit komplexeren Antworten auf die Eingänge beider Augen. Ein Zelltyp wurde zum Beispiel aktiv, wenn beide Augen eine Geradeausbewegung wahrnahmen, aber nicht eine Drehung rechtsherum. Ein interessantes Ergebnis, denn in beiden Fällen sollte das linke Auge eine Bewegung von außen nach innen sehen. "Wir haben somit nicht nur neue Zelltypen gefunden, sondern auch eine mögliche Erklärung dafür, wie das Gehirn der Fische zwischen geraden und gedrehten Bewegungen unterscheidet, freut sich Fumi Kubo.
Während die Fische wieder frei in ihren Becken schwammen, erstellten die Wissenschaftler aus den erfassten Aufgaben der neuen Nervenzelltypen und ihrer Lage im Gehirn einen Verbindungsschaltplan der Zellen. Die Ergebnisse tragen dazu bei, die Verarbeitung von Bewegungen im Wirbeltiergehirn besser zu verstehen. Fumi Kubo denkt jedoch bereits an den nächsten Schritt: "Die nächste Herausforderung wird nun sein, die angenommenen Verbindungen im Gehirn nachzuweisen.
Originalveröffentlichung:
Fumi Kubo, Bastian Hablitzel, Marco Dal Maschio, Wolfgang Driever, Herwig Baier, and
Aristides B Arrenberg
Functional architecture of an optic flow responsive area that drives horizontal eye movements in zebrafish
Neuron, 19. März 2014

Kontakt:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de
Prof. Dr. Herwig Baier
Abteilung Gene - Schaltkreise - Verhalten
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3200
Email: hbaier@neuro.mpg.de
Weitere Informationen
Max-Planck-Institut für Neurobiologie
Das Max-Planck-Institut für Neurobiologie (MPIN) liegt in Martinsried, im Südwesten von München. Es ist eine außeruniversitäre Forschungseinrichtung, in der die grundlegenden Funktionen, der Aufbau und die Entwicklung des Gehirns und des Nervensystems untersucht werden.Woran die Wissenschaftler des Instituts arbeiten, lässt sich mit einem Beispiel veranschaulichen: Während Sie diesen Text lesen, überwacht und steuert Ihr Gehirn gleichzeitig Ihre Organfunktionen, berechnet und koordiniert jede kleinste Bewegung, insbesondere die Ihrer Augen, und analysiert die eingehenden Informationen Ihrer verschiedenen Sinne. Doch wie schafft es das Gehirn, all diese Informationen zu verarbeiten? Wie sind die Zellen miteinander verschaltet? Wie entwickelt sich solch ein komplexes System? Was passiert auf der Ebene der Moleküle bis hin zum ganzen System? Und was passiert, wenn das Nervensystem beschädigt oder von Krankheitserregern angegriffen wird?Dies sind nur einige der Fragen, die sich die Wissenschaftlerinnen und Wissenschaftler des Instituts stellen. Da sich die Forscher dabei immer an den Grenzen des Wissens bewegen, werden diese Fragen nicht am Menschen sondern mit Computersimulationen, an Zellkulturen und an Tiermodellen studiert.
Max-Planck-Institut für Neurobiologie,
, 82152 Martinsried, Deutschland
Tel.: ;
Weitere Meldungen dieses Unternehmens
Erfolgreiche Pressearbeit eBook
Pressearbeit
Eine Pflichtlektüre für mehr Sichtbarkeit durch Pressemitteilungen.
Pressekontakt

Max-Planck-Institut für Neurobiologie

82152 Martinsried
Deutschland

E-Mail:
Web:
Tel:
Fax:
Drucken Weiterempfehlen PDF
Schlagworte
Permanentlinks https://www.prmaximus.de/102208

https://www.prmaximus.de/pressefach/max-planck-institut-für-neurobiologie-pressefach.html
Die Pressemeldung "Warum Fische beim Schwimmen nicht abdriften" unterliegt dem Urheberrecht. Jegliche Verwendung dieses Textes, auch auszugsweise, erfordert die vorherige schriftliche Erlaubnis des Autors. Autor der Pressemeldung "Warum Fische beim Schwimmen nicht abdriften" ist Max-Planck-Institut für Neurobiologie, vertreten durch .