

Sensitive balance in the immune system

Sensitive balance in the immune system
br />
br />Apoptosis is used by cells that are changed by disease or are simply not needed any longer to eliminate themselves before they become a hazard to the body?on a cellular level, death is part of life. Disruption of this process can lead to cancer or immunodeficiencies, but also to autoimmune diseases, in which cells attack their own body. HZI scientist Prof Ingo Schmitz and his team investigate the regulation of apoptosis in the immune system. In collaboration with researchers of the Otto von Guericke University Magdeburg and the Helmholtz Zentrum München, they elucidated the role of a central protein in this process. The researchers published their results in "Cell Death
 So-called c-FLIP proteins inhibit signaling cascades that can lead to apoptosis. This is important temporarily in the response to pathogens to ensure that lymphocytes, a type of immune cells, can proliferate sufficiently. Towards the end of the immune response, once the lymphocytes completed their tasks and successfully eliminated the pathogen, c-FLIP is usually degraded. As a result, apoptosis is enabled again, the lymphocytes die and the equilibrium in the immune system is restored.
The HZI researchers then took a closer look at the exact function of a certain variant of the protein, called c-FLIPR. They used mice to investigate what happens if this protein is always present in lymphocytes and other blood cells. Whereas the apoptosis inhibitor caused no anomalies in young mice, the scenario in older mice was quite different: "The composition of the lymphocytes was changed significantly," says Schmitz. "Furthermore the immune cells were strongly activated."

- />The overactivation is easily apparent in the body. The researchers found immune molecules, called autoantibodies, which attack the body's own tissue in the kidneys and lung. In addition, they detected harmful protein deposits in the kidneys. The changes in the lung tissue are also indicative of the immune system attacking its own body in the presence of too much c-FLIPR. "Immune cells migrate into the lung and attack the lung tissue," says Schmitz. Physicians usually see these symptoms in a human autoimmune disease called systemic lupus erythematosus
The HZI scientists discovered already last year that cells can fight bacterial infections better if c-FLIPR is turned on permanently. This means that inhibiting the suicide of cells has beneficial effects in acute infections, but leads to autoimmune reactions in the long run. "c-FLIPR is important for the balance of the immune system. It might be possible to intervene with suitable therapeutic agents if the equilibrium of the immune system is disrupted," says Schmitz.
Original publication
Frida Ewald, Michaela Annemann, Marina C. Pils, Carlos Plaza-Sirvent, Frauke Neff, Christian Erck, Dirk Reinhold, Ingo Schmitz
br />Constitutive expression of murine c-FLIPR causes autoimmunity in aged mice
br />Cell Death
 Disease, 2014
br />The research group "Systems-oriented Immunology and Inflammation Research" studies the molecular processes that sensitize immune cells to the bodys own tissues. A main focus is on the cellular suicide programme apoptosis.</br /> The Helmholtz Centre for Infection Research (HZI)
scientists at the Helmholtz Centre for Infection Research in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the bodys response to infection. Helping to improve the scientific communitys understanding of a given bacteriums or Infektionsforschung GmbH (HZI)
Inhoffenstraße 7
38124 Braunschweig
Telefon: +49 (0)531 6181-0
Telefax: +49 (0)531 6181-2655
URL: http://www.helmholtz-hzi.de/

Pressekontakt

Helmholtz-Zentrum für Infektionsforschung (HZI)

38124 Braunschweig

helmholtz-hzi.de/

Firmenkontakt

Helmholtz-Zentrum für Infektionsforschung (HZI)

38124 Braunschweig

helmholtz-hzi.de/

Der Schwerpunkt unserer Arbeit ist die Erforschung von Krankheitserregern, die entweder medzinisch relevant, oder als Modelle für die Erforschung von Infektionsmechanismen dienen können. Träger des Zentrums sind die Bundesrepublik Deutschland und das Land Niedersachsen.Das Helmholtz-Zentrum für Infektionsforschung beschäftigt rund 600 Mitarbeiter aus über 40 Ländern und verfügt über einen Jahresetat von rund 47 Millionen Euro. Das Institut ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands